Send to

Choose Destination
Exp Parasitol. 1989 Jul;69(1):78-90.

Leishmania spp.: development of pentostam-resistant clones in vitro by discontinuous drug exposure.

Author information

Division of Experimental Therapeutics, Walter Reed Army Medical Center, Washington, D.C. 20307-5100.


Antimony unresponsiveness in mucocutaneous and visceral leishmaniasis is a serious clinical problem. Information on the mechanisms and characteristics of drug resistance in parasites that suggest chemotherapeutic strategies to overcome resistance is of practical importance. We developed nine lines of Leishmania resistant to drugs, the major emphasis being on pentavalent antimony (Sb) complexed to carbohydrate in the form of sodium stibogluconate (Pentostam), one of the only two antileishmanial agents with a clearly favorable therapeutic index. Resistance to Pentostam (33- to 212-fold increase) was obtained in promastigotes of Leishmania in vitro by exposure to gradually increasing concentrations of drug over several passages. Resistance to Sb was found to be either stable or unstable. Stable resistance to Sb required (greater than 3) exposures of the initial sensitive clones to Pentostam and tended to stabilize with increased time under pressure. In general, resistance obtained in a clone after only a few (less than or equal to 3) step treatments was low and unstable. Differences in the susceptibility to Pentostam were found between strains isolated from patients with American cutaneous leishmaniasis. In addition, natural isolates of Leishmania from patients represented a heterogeneous population of parasites as demonstrated by a biphasic concentration response to Sb (typical of mixed population dynamics) and by marked differences in susceptibility to Pentostam among clones prepared from single isolates. These results suggest that the emergence of parasite resistance to antimonial treatment is a potential risk of inadequate dose therapy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center