Format

Send to

Choose Destination
Nat Rev Drug Discov. 2015 Jan;14(1):45-57. doi: 10.1038/nrd4477. Epub 2014 Nov 28.

Managing diabetes with nanomedicine: challenges and opportunities.

Author information

1
1] Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [3] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [4].
2
1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [3].
3
Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA.
4
1] Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [3] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [4] Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. [5] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Abstract

Nanotechnology-based approaches hold substantial potential for improving the care of patients with diabetes. Nanoparticles are being developed as imaging contrast agents to assist in the early diagnosis of type 1 diabetes. Glucose nanosensors are being incorporated in implantable devices that enable more accurate and patient-friendly real-time tracking of blood glucose levels, and are also providing the basis for glucose-responsive nanoparticles that better mimic the body's physiological needs for insulin. Finally, nanotechnology is being used in non-invasive approaches to insulin delivery and to engineer more effective vaccine, cell and gene therapies for type 1 diabetes. Here, we analyse the current state of these approaches and discuss key issues for their translation to clinical practice.

PMID:
25430866
PMCID:
PMC4751590
DOI:
10.1038/nrd4477
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center