Send to

Choose Destination
J Ind Microbiol Biotechnol. 2015 Jan;42(1):21-8. doi: 10.1007/s10295-014-1542-0. Epub 2014 Nov 26.

Efficient production of (R,R)-2,3-butanediol from cellulosic hydrolysate using Paenibacillus polymyxa ICGEB2008.

Author information

Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.


We report here the production of pure (R,R)-2,3-butanediol (2,3-BDO) isomer by the non-pathogenic Paenibacillus polymyxa ICGEB2008 using lignocellulosic hydrolysate as substrate. Experimental design based on Plackett-Burman resulted in identification of Mn and K as most crucial salt elements along with the yeast extract for 2,3-BDO production. Further experiments using Box-Behnken design indicated that both KCl and yeast extract together had major impact on 2,3-BDO production. Optimized medium resulted in 2,3-BDO production with 2.3-fold higher maximum volumetric productivity (2.01 g/L/h) and similar yield (0.33 g/g sugar) as compared to rich yeast extract-peptone-dextrose medium in the bioreactor studies. Considering that the balance substrate was channeled towards ethanol, carbon recovery was close to theoretical yield between the two solvents, i.e., 2,3-BDO and ethanol. Biomass hydrolysate and corn-steep liquor was used further to produce 2,3-BDO without impacting its yield. In addition, 2,3-BDO was also produced via simultaneous saccharification and fermentation, signifying robustness of the strain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center