Send to

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 1989 Jun;83(6):1903-15.

Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries.

Author information

Department of Internal Medicine, University of Heidelberg, Federal Republic of Germany.


Because 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has been shown to play roles in both proliferation and differentiation of novel target cells, the potential expression of 1,25(OH)2D3 receptor (VDR) activity was investigated in cultured bovine aortic endothelial cells (BAEC). Receptor binding assays performed on nuclear extracts of BAEC revealed a single class of specific, high-affinity VDR that displayed a 4.5-fold increase in maximal ligand binding (Nmax) in rapidly proliferating BAEC compared with confluent, density-arrested cells. When confluent BAEC were incubated with activators of protein kinase C (PKC), Nmax increased 2.5-fold within 6-24 h and this upregulation was prevented by sphingosine, an inhibitor of PKC, as well as by actinomycin D or cycloheximide. Immunohistochemical visualization using a specific MAb disclosed nuclear localized VDR in venular and capillary endothelial cells of human skin biopsies, documenting the expression of VDR, in vivo, and validating the BAEC model. Finally, additional experiments indicated that BAEC formed the 1,25(OH)2D3 hormonal metabolite from 25(OH)D3 substrate, in vitro, and growth curves of BAEC maintained in the presence of 10(-8) M 1,25(OH)2D3 showed a 36% decrease in saturation density. These data provide evidence for the presence of a vitamin D microendocrine system in endothelial cells, consisting of the VDR and a 1 alpha-hydroxylase enzyme capable of producing 1,25(OH)2D3. That both components of this system are coordinately regulated, and that BAEC respond to the 1,25(OH)2D3 hormone by modulating growth kinetics, suggests the existence of a vitamin D autocrine loop in endothelium that may play a role in the development and/or functions of this pathophysiologically significant cell population.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Society for Clinical Investigation Icon for PubMed Central
    Loading ...
    Support Center