Send to

Choose Destination
See comment in PubMed Commons below
Psychopharmacology (Berl). 1989;97(1):118-22.

Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex.

Author information

  • 1Department of Neurology, Stanford University Medical Center, CA 94305.


The binding affinities of four hallucinogenic agents were analyzed at nine neurotransmitter binding sites in human cortex. d-Lysergic acid diethylamide (d-LSD), N,N-dimethyltryptamine (DMT), 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane (DOB) display highest affinity for the recently identified "DOB binding site" labeled by 77Br-R(-)DOB. The phenalkylamines, DOI and DOB, display subnanomolar affinity for the 77Br-R(-)DOB-labeled site, whereas the indolealkylamines, d-LSD and DMT, display nanomolar affinity for this site. d-LSD was the most potent of the four hallucinogens at six of the other eight sites analyzed in this study. All four hallucinogens also display high affinity for the 5-hydroxytryptamine2 (5-HT2) receptor subtype, with potencies ranging from 4 to 360 nM. Marked differences in relative affinities were observed between the indolealkylamines and the phenalkylamines at the 5-HT1A, 5-HT1D, and DOB binding sites. These rank-order differences in affinities are likely to account for the differing effects of these agents in various biochemical and physiological assays.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center