Send to

Choose Destination
Philos Trans R Soc Lond B Biol Sci. 2014 Dec 19;369(1658):20130393. doi: 10.1098/rstb.2013.0393.

Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging.

Author information

Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), 53, Avenue Mounier-UCL 53.75, Bruxelles 1200, Belgium International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada H3C 3J7


The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain.


electroencephalogram; multisensory integration; music beat and meter perception; neural entrainment; sensorimotor integration; steady-state evoked potentials

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center