Format

Send to

Choose Destination
Reproduction. 2015 Feb;149(2):203-12. doi: 10.1530/REP-14-0445. Epub 2014 Nov 10.

Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development.

Author information

1
Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea.
2
Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea.
3
Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea smithge7@msu.edu.

Abstract

Upstream stimulating factor 1 (USF1) is a basic helix-loop-helix transcription factor that specifically binds to E-box DNA motifs, known cis-elements of key oocyte expressed genes essential for oocyte and early embryonic development. However, the functional and regulatory role of USF1 in bovine oocyte and embryo development is not understood. In this study, we demonstrated that USF1 mRNA is maternal in origin and expressed in a stage specific manner during the course of oocyte maturation and preimplantation embryonic development. Immunocytochemical analysis showed detectable USF1 protein during oocyte maturation and early embryonic development with increased abundance at 8-16-cell stage of embryo development, suggesting a potential role in embryonic genome activation. Knockdown of USF1 in germinal vesicle stage oocytes did not affect meiotic maturation or cumulus expansion, but caused significant changes in mRNA abundance for genes associated with oocyte developmental competence. Furthermore, siRNA-mediated depletion of USF1 in presumptive zygote stage embryos demonstrated that USF1 is required for early embryonic development to the blastocyst stage. A similar (USF2) yet unique (TWIST2) expression pattern during oocyte and early embryonic development for related E-box binding transcription factors known to cooperatively bind USF1 implies a potential link to USF1 action. This study demonstrates that USF1 is a maternally derived transcription factor required for bovine early embryonic development, which also functions in regulation of JY1, GDF9, and FST genes associated with oocyte competence.

PMID:
25385722
PMCID:
PMC4286489
DOI:
10.1530/REP-14-0445
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Sheridan PubFactory Icon for PubMed Central
Loading ...
Support Center