Format

Send to

Choose Destination
Front Neurol. 2014 Oct 20;5:213. doi: 10.3389/fneur.2014.00213. eCollection 2014.

Penfield's Prediction: A Mechanism for Deep Brain Stimulation.

Author information

1
Department of Neurology, University of North Carolina , Chapel Hill, NC , USA ; Department of Neurosurgery, University of North Carolina , Chapel Hill, NC , USA.

Abstract

CONTEXT:

Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS) therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite) effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect, which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue.

HYPOTHESIS:

The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high-frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high-frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large-scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield's "centrencephalic system," which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system.

EVIDENCE:

This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science investigations, which support the hypothesis are also cited.

CONCLUSION:

This paper proposes a novel hypothesis for the mechanism of action of DBS, which was conceptually foreshadowed by Wilder Penfield decades ago.

KEYWORDS:

DBS mechanism of action; Penfield; deep brain stimulation; forebrain; history of DBS; neural synchronization; parallel processing; thalamus

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center