Format

Send to

Choose Destination
BMC Genomics. 2014 Oct 27;15:940. doi: 10.1186/1471-2164-15-940.

Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span.

Author information

1
Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec (CHU de Québec Research Center), 9 McMahon Sreet, Québec City G1R 2 J6, Canada. michel.lebel@crhdq.ulaval.ca.

Abstract

BACKGROUND:

Werner Syndrome (WS) is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for WS encodes a DNA helicase/exonuclease protein believed to affect different aspects of transcription, replication, and DNA repair. Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase ortholog also exhibits a shorter life span, which can be rescued by vitamin C. In this study, we analyzed the impact of a mutation in the wrn-1 gene and the dietary supplementation of vitamin C on the global mRNA expression of the whole C. elegans by the RNA-seq technology.

RESULTS:

Vitamin C increased the mean life span of the wrn-1(gk99) mutant and the N2 wild type strains at 25°C. However, the alteration of gene expression by vitamin C is different between wrn-1(gk99) and wild type strains. We observed alteration in the expression of 1522 genes in wrn-1(gk99) worms compared to wild type animals. Such genes significantly affected the metabolism of lipid, cellular ketone, organic acid, and carboxylic acids. Vitamin C, in return, altered the expression of genes in wrn-1(gk99) worms involved in locomotion and anatomical structure development. Proteolysis was the only biological process significantly affected by vitamin C in wild type worms.

CONCLUSIONS:

Expression profiling of wrn-1(gk99) worms revealed a very different response to the addition of vitamin C compared to wild type worms. Finally, vitamin C extended the life span of wrn-1(gk99) animals by altering biological processes involved mainly in locomotion and anatomical structure development.

PMID:
25346348
PMCID:
PMC4221712
DOI:
10.1186/1471-2164-15-940
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center