Send to

Choose Destination
New Phytol. 2015 Feb;205(3):1320-9. doi: 10.1111/nph.13120. Epub 2014 Oct 27.

Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula.

Author information

Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany.


Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH₄(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH₄(+) was mediated by 2.5-fold higher expression of the NH₄(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH₄(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.


ammonium; glutamine; nitrogen (N) nutrition; plant carnivory; root : shoot integration

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center