Format

Send to

Choose Destination
J Vet Med Sci. 2015 Feb;77(2):167-73. doi: 10.1292/jvms.14-0400. Epub 2014 Oct 22.

Electroacupuncture at the Zusanli and Baihui acupoints ameliorates type-2 diabetes-induced reductions in proliferating cells and differentiated neuroblasts in the hippocampal dentate gyrus with increasing brain-derived neurotrophic factor levels.

Author information

1
Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea.

Abstract

In the current study, we investigated whether electroacupuncture (EA) can inhibit pathological reductions in neurogenesis. Zucker diabetic fatty (ZDF) rats at 7 weeks of age were anesthetized with zoletil, and sham-acupuncture or EA at the Zusanli (ST36) and Baihui (GV20) acupoints was administered once a day for 5 weeks. In the ZDF group that received sham-EA (ZDF-Sham group), the blood glucose level was significantly increased together with age as compared to the control littermates [Zucker lean control (ZLC) rat]. In contrast, proliferating cells and differentiated neuroblasts were significantly decreased in the ZDF-Sham group compared to the ZLC group. Although EA treatment decreased blood glucose levels, this was not statistically significant when compared to blood glucose levels changes in the ZDF-Sham group. However, proliferating cells and differentiated neuroblasts were significantly increased with EA in ZDF rats as compared to those in the ZDF-Sham group. Brain-derived neurotrophic factor (BDNF) levels were significantly decreased in hippocampal homogenates of ZDF-Sham group compared to those in the ZLC group. The EA treatment significantly increased the BDNF levels compared to those in the ZDF-Sham group, and BDNF levels in this group were similar to those in the ZLC group. These results suggest that EA at ST36 and GV20 can ameliorate the reductions in proliferating cells and differentiated neuroblasts in the dentate gyrus induced by type-2 diabetes without significantly reducing blood glucose levels with increasing BDNF levels.

PMID:
25342636
PMCID:
PMC4363018
DOI:
10.1292/jvms.14-0400
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic Icon for PubMed Central
Loading ...
Support Center