Format

Send to

Choose Destination
PLoS Negl Trop Dis. 2014 Oct 23;8(10):e3253. doi: 10.1371/journal.pntd.0003253. eCollection 2014 Oct.

Identification and characterization of hundreds of potent and selective inhibitors of Trypanosoma brucei growth from a kinase-targeted library screening campaign.

Author information

1
Instituto de Parasitología y Biomedicina "López-Neyra" Consejo Superior de Investigaciones Cientificas, Granada, Spain.
2
Instituto de Parasitología y Biomedicina "López-Neyra" Consejo Superior de Investigaciones Cientificas, Granada, Spain; Department of Chemistry and Chemical Biology and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America.
3
Department of Chemistry and Chemical Biology and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America.
4
Tres Cantos Medicines Development Campus, DDW and CIB, GlaxoSmithKline, Tres Cantos, Spain.

Abstract

In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.

PMID:
25340575
PMCID:
PMC4207660
DOI:
10.1371/journal.pntd.0003253
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center