Format

Send to

Choose Destination
J Immunol. 2014 Dec 1;193(11):5444-52. doi: 10.4049/jimmunol.1303400. Epub 2014 Oct 22.

X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women.

Author information

1
INSERM, Unité Mixte de Recherche 1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie de Toulouse Purpan, Université Toulouse 3, Toulouse F-31300, France;
2
Recherche et Développement Laboratoire, Etablissement Français du Sang Rhône-Alpes, La Tronche F-38701, France; Université Joseph Fourier, Grenoble F-38041, France; and Immunobiology and Immunotherapy of Cancers, INSERM U823, La Tronche F-38701, France.
3
INSERM, Unité Mixte de Recherche 1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie de Toulouse Purpan, Université Toulouse 3, Toulouse F-31300, France; Jean-Charles.Guery@inserm.fr.

Abstract

Human plasmacytoid dendritic cells (pDCs) play a major role in innate immunity through the production of type I IFNs after TLR engagement by pathogens. Sex-based differences in the innate function of human pDCs have been established, with pDCs from women exhibiting enhanced TLR7-mediated IFN-α production as compared with pDCs from males. In mice, we recently provided evidence for a role of estrogens as a positive regulator of pDC innate functions through cell-intrinsic estrogen receptor α signaling, but did not exclude a role for other X-linked factors, particularly in human pDCs. In this study, we investigated the respective contribution of X chromosome dosage and sex hormones using a humanized mouse model in which male or female NOD-SCID-β2m(-/-) were transplanted with human progenitor cells purified from either male or female cord blood cells. We showed that, in response to TLR7 ligands, the frequency of IFN-α- and TNF-α-producing pDCs from either sex was greater in female than in male host mice, suggesting a positive role for estrogens. Indeed, blockade of estrogen receptor signaling during pDC development in vitro inhibited TLR7-mediated IFN-α production by human pDCs, which expressed both ESR1 and ESR2 genes. Interestingly, we also found that X chromosome dosage contributed to this sex bias as female pDCs have an enhanced TLR7-mediated IFN-α response as compared with male ones, irrespective of the sex of the recipient mice. Together, these results indicate that female sex hormones, estrogens, and X chromosome complement independently contribute to the enhanced TLR7-mediated IFN-α response of pDCs in women.

PMID:
25339659
DOI:
10.4049/jimmunol.1303400
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center