Format

Send to

Choose Destination
BMC Evol Biol. 2014 Sep 23;14:193. doi: 10.1186/s12862-014-0193-0.

Ingestion of radioactively contaminated diets for two generations in the pale grass blue butterfly.

Abstract

BACKGROUND:

The release of radioactive materials due to the Fukushima nuclear accident has raised concern regarding the biological impacts of ingesting radioactively contaminated diets on organisms. We previously performed an internal exposure experiment in which contaminated leaves collected from polluted areas were fed to larvae of the pale grass blue butterfly, Zizeeria maha, from Okinawa, which is one of the least polluted localities in Japan. Using the same experimental system, in the present study, we further examined the effects of low-level-contaminated diets on this butterfly. Leaves were collected from two localities in Tohoku (Motomiya (161 Bq/kg) and Koriyama (117 Bq/kg)); two in Kanto (Kashiwa (47.6 Bq/kg) and Musashino (6.4 Bq/kg)); one in Tokai (Atami (2.5 Bq/kg)); and from Okinawa (0.2 Bq/kg). In addition to the effects on the first generation, we examined the possible transgenerational effects of the diets on the next generation.

RESULTS:

In the first generation, the Tohoku groups showed higher rates of mortality and abnormalities and a smaller forewing size than the Okinawa group. The mortality rates were largely dependent on the ingested dose of caesium. The survival rates of the Kanto-Tokai groups were greater than 80%, but the rates in the Tohoku groups were much lower. In the next generation, the survival rates in the Tohoku groups were below 20%, whereas those of the Okinawa groups were above 70%. The survival rates in the second generation were independent of the locality of the leaves ingested by the first generation, indicating that the diet in the second generation was the determinant of their survival. Moreover, a smaller forewing size was observed in the Tohoku groups in the second generation. However, the forewing size was inversely correlated with the cumulative caesium dose ingested throughout the first and second generations, indicating that the diet in the first generation also influenced the forewing size of the second generation.

CONCLUSIONS:

Biological effects are detectable under a low ingested dose of radioactivity from a contaminated diet. The effects are transgenerational but can be overcome by ingesting a non-contaminated diet, suggesting that at least some of the observed effects are attributable to non-genetic physiological changes.

PMID:
25330067
PMCID:
PMC4171559
DOI:
10.1186/s12862-014-0193-0
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center