Send to

Choose Destination
Nature. 1989 Nov 23;342(6248):453-6.

Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein.

Author information

Lehrstuhl für Mikrobiologie der Universität, München, FRG.


During the biosynthesis of selenoproteins in both prokaryotes and eukaryotes, selenocysteine is cotranslationally incorporated into the nascent polypeptide chain through a process directed by a UGA codon that normally functions as a stop codon. Recently, four genes have been identified whose products are required for selenocysteine incorporation in Escherichia coli. One of these genes, selC, codes for a novel transfer RNA species (tRNAUCA) that accepts serine and cotranslationally inserts selenocysteine by recognizing the specific UGA codon. The serine residue attached to this tRNA is converted to selenocysteine in a reaction dependent on functional selA and selD gene products. By contrast, the selB gene product (SELB) is not required until after selenocysteyl-tRNA biosynthesis. Here we present evidence indicating that SELB is a novel translation factor. The deduced amino-acid sequence of SELB exhibits extensive homology with the sequences of the translation initiation factor-2 (IF-2) and elongation factor Tu (EF-Tu). Furthermore, purified SELB protein binds guanine nucleotides in a 1:1 molar ratio and specifically complexes selenocysteyl-tRNAUCA, but does not interact with seryl-tRNAUCA. Thus, SELB could be an amino acid-specific elongation factor, replacing EF-Tu in a special translational step.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center