Format

Send to

Choose Destination
Handb Clin Neurol. 2014;125:33-54. doi: 10.1016/B978-0-444-62619-6.00003-3.

Neurocircuitry of alcohol addiction: synthesis from animal models.

Author information

1
Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA. Electronic address: gkoob@scripps.edu.

Abstract

Alcoholism, more generically drug addiction, can be defined as a chronically relapsing disorder characterized by: (1) compulsion to seek and take the drug (alcohol); (2) loss of control in limiting (alcohol) intake; and (3) emergence of a negative emotional state (e.g., dysphoria, anxiety, irritability), reflecting a motivational withdrawal syndrome, when access to the drug (alcohol) is prevented (defined here as dependence). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here, derived largely from animal models, is that a key component involves decreased brain reward function, increased brain stress function, and compromised executive function, all of which contribute to the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from decreases in reward neurotransmission in the ventral striatum, such as decreased dopamine and opioid peptide function in the nucleus accumbens (ventral striatum), but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Data from animal models that support this thesis show that acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. Alcoholism also involves substantial neuroadaptations that persist beyond acute withdrawal and trigger relapse and deficits in cognitive function that can also fuel compulsive drinking. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include increases in norepinephrine function, increases in dynorphin activity, and decreases in neuropeptide Y. The combination of impairment of function in reward circuitry and recruitment of brain stress system circuitry provides a powerful neurochemical basis for the negative emotional states that are responsible for the negative reinforcement that drives the compulsivity of alcoholism.

KEYWORDS:

addiction; corticotropin-releasing factor; extended amygdala; opponent process; stress

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center