Format

Send to

Choose Destination
Epilepsia. 2014 Nov;55(11):1693-702. doi: 10.1111/epi.12804. Epub 2014 Oct 9.

WONOEP appraisal: optogenetic tools to suppress seizures and explore the mechanisms of epileptogenesis.

Author information

1
Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, United Kingdom.

Abstract

Optogenetics is a novel technology that combines optics and genetics by optical control of microbial opsins, targeted to living cell membranes. The versatility and the electrophysiologic characteristics of the light-sensitive ion-channels channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and the light-sensitive proton pump archaerhodopsin-3 (Arch) make these optogenetic tools potent candidates in controlling neuronal firing in models of epilepsy and in providing insights into the physiology and pathology of neuronal network organization and synchronization. Opsins allow selective activation of excitatory neurons and inhibitory interneurons, or subclasses of interneurons, to study their activity patterns in distinct brain-states in vivo and to dissect their role in generation of synchrony and seizures. The influence of gliotransmission on epileptic network function is another topic of great interest that can be further explored by using light-activated Gq protein-coupled opsins for selective activation of astrocytes. The ever-growing optogenetic toolbox can also be combined with emerging techniques that have greatly expanded our ability to record specific subtypes of cortical and hippocampal neurons in awake behaving animals such as juxtacellular recording and two-photon guided whole-cell recording, to identify the specific subtypes of neurons that are altered in epileptic networks. Finally, optogenetic tools allow rapid and reversible suppression of epileptic electroencephalography (EEG) activity upon photoactivation. This review outlines the most recent advances achieved with optogenetic techniques in the field of epilepsy by summarizing the presentations contributed to the 13th ILAE WONOEP meeting held in the Laurentian Mountains, Quebec, in June 2013.

KEYWORDS:

Channelrhodopsin; Epilepsy; Gliotransmission; Halorhodopsin; Interneurons; Optic inhibition; Seizure detection

PMID:
25303540
DOI:
10.1111/epi.12804
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center