Relative object detectability (ROD): a new metric for comparing x-ray image detector performance for a specified object of interest

Proc SPIE Int Soc Opt Eng. 2014 Mar 19:9033:90335I. doi: 10.1117/12.2043504.

Abstract

Relative object detectability (ROD) quantifies the relative performance of two image detectors for a specified object of interest by taking the following ratio: the integral of detective quantum efficiency of a detector weighted by the frequency spectrum of the object divided by that for a second detector. Four different detectors, namely the micro-angiographic fluoroscope (MAF), the Dexela Model 1207 (Dex) and Hamamatsu Model C10901D-40 (Ham) CMOS x-ray detectors, and a flat-panel detector (FPD) were compared. The ROD was calculated for six pairs of detectors: (1) Dex/FPD, (2) MAF/FPD, (3) Ham/FPD, (4) Dex/Ham, (5) MAF/Ham and (6) MAF/Dex for wires of 5 mm fixed length, solid spheres ranging in diameter from 50 to 600 microns, and four simulated iodine-filled blood vessels of outer diameters 0.4 and 0.5 mm, each with wall thicknesses of 0.1 and 0.15 mm. Marked variation of ROD for the wires and spheres is demonstrated as a function of object size for the various detector pairs. The ROD of all other detectors relative to the FPD was much greater than one for small features and approached 1.0 as the diameter increased. The relative detectability of simulated small iodine-filled blood vessels for all detector pairs was seen to be independent of the vessel wall thickness for the same inner diameter. In this study, the ROD is shown to have the potential to be a useful figure of merit to evaluate the relative performance of two detectors for a given imaging task.

Keywords: DQE; detectability; new metric; relative performance of detectors; specified imaging task.