Format

Send to

Choose Destination
J Autism Dev Disord. 2015 May;45(5):1121-36. doi: 10.1007/s10803-014-2268-6.

Applying machine learning to facilitate autism diagnostics: pitfalls and promises.

Author information

1
Signal Analysis & Interpretation Laboratory (SAIL), University of Southern California, 3710 McClintock Ave., Los Angeles, CA, 90089, USA, dbone@usc.edu.

Abstract

Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead to misinformed conclusions. To illustrate this concern, the current paper critically evaluates and attempts to reproduce results from two studies (Wall et al. in Transl Psychiatry 2(4):e100, 2012a; PloS One 7(8), 2012b) that claim to drastically reduce time to diagnose autism using machine learning. Our failure to generate comparable findings to those reported by Wall and colleagues using larger and more balanced data underscores several conceptual and methodological problems associated with these studies. We conclude with proposed best-practices when using machine learning in autism research, and highlight some especially promising areas for collaborative work at the intersection of computational and behavioral science.

PMID:
25294649
PMCID:
PMC4390409
DOI:
10.1007/s10803-014-2268-6
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center