Detection of mu opioid receptor (MOPR) and its glycosylation in rat and mouse brains by western blot with anti-μC, an affinity-purified polyclonal anti-MOPR antibody

Methods Mol Biol. 2015:1230:141-54. doi: 10.1007/978-1-4939-1708-2_11.

Abstract

Our experience demonstrates that it is difficult to identify MOPR in rat and mouse brains by western blot, in part due to low abundance of the receptor and a wide relative molecular mass (Mr) range of the receptor associated with its heterogeneous glycosylation states. Here, we describe generation and purification of anti-μC (a rabbit polyclonal anti-MOPR antibody), characterization of its specificity in immunoblotting of HA-tagged MOPR expressed in a cell line, and ultimately, unequivocal detection of the MOPR in brain tissues by western blot with multiple rigorous controls. In particular, using brain tissues from MOPR knockout (K/O) mice as the negative controls allowed unambiguous identification of the MOPR band, since the anti-MOPR antibody, even after affinity purification, recognizes nonspecific protein bands. The MOPR was resolved as a faint, broad, and diffuse band with a wide Mr range of 58-84 kDa depending on brain regions and species. Upon deglycosylation to remove N-linked glycans by PNGase F (but not Endo H), the MOPR became a dense and sharp band with Mr of ~43 kDa, close to the theoretical Mr of its deduced amino acid sequences. Thus, MOPRs in rodent brains are differentially glycosylated by complex type of N-linked glycans in brain region- and species-specific manners. Furthermore, we characterized the MOPR in an A112G/N38D-MOPR knockin mouse model that possesses the equivalent substitution of the A118G/N40D SNP in the human MOPR gene. The substitution removes one of the four and five N-linked consensus glycosylation sites of the mouse and human MOPR, respectively. We demonstrated that the Mr of the MOPR in A112G mouse brains was lower than that in wild-type mouse brains, and that the difference was due to lower degrees of N-linked glycosylation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibodies / immunology*
  • Brain / immunology
  • Brain / metabolism
  • Glycosylation
  • Humans
  • Immunoblotting / methods*
  • Mice
  • Rabbits
  • Rats
  • Receptors, Opioid, mu / immunology
  • Receptors, Opioid, mu / isolation & purification*
  • Receptors, Opioid, mu / metabolism

Substances

  • Antibodies
  • Receptors, Opioid, mu