Format

Send to

Choose Destination
Plast Reconstr Surg Glob Open. 2013 Oct 7;1(6):e41. doi: 10.1097/GOX.0b013e3182a7f222. eCollection 2013 Sep.

Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue.

Author information

1
Department of Experimental and Clinical Medicine, Section of Anatomy and Histology (Histology Unit), University of Florence, Florence, Italy; Plastic Surgery Unit and ‡General Surgery Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.

Abstract

BACKGROUND:

In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin.

METHODS:

Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry.

RESULTS:

Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat.

CONCLUSIONS:

This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center