Involvement of microRNAs (miRNAs) in epithelial-mesenchymal transition (EMT)-related metastasis. miRNAs can regulate EMT by acting on several EMT-related pathways, including transforming growth factor-β (TGF-β) signaling, receptor tyrosine kinase (RTK)-mediated pathways, and Wnt/β-catenin signaling. miR-140-5p can directly target TGF-β receptor 1, miR-122 can target Ras homolog family member A (RHOA), and miR-192 and miR-200 can negatively regulate zinc finger E-box 1 (ZEB1) and ZEB2, respectively, thus inhibiting TGF-β-mediated metastasis. The RTK-related pathways, including the Ras-Raf-MEK-ERK cascades and phosphatidylinositol 3-kinase (PI3K)-Akt pathway, are also regulated by miRNAs. miR-1, miR-23b, miR-34a, and miR-148a can target c-Met, a RTK for hepatocyte growth factor (HGF). MiR-199a/b-3P can target p21 protein (Cdc42/Rac)-activated kinase 4 (PAK4), subsequently inhibiting Raf-MEK-ERK cascades. On the contrary, phosphatase and tensin homolog (PTEN) can be negatively regulated by miR-21 and miR-29a, and miR-222 and miR-222 simultaneously target PP2A. miR-148a can also negatively regulate pre-B cell leukemia transcription factor-interacting protein (HPIP), an activator of both ERK and AKT. Moreover, miR-148a can target Wnt1 mRNA, thus blocking EMT mediated by Wnt/β-catenin-signaling in hepatocellular carcinoma. EGF: epidermal growth factor; FGF: fibroblast growth factor. Arrows indicate an activating effect of miRNAs on their targets, whereas the bars indicate an inhibitory effect. Green miRNA: upregulated; Red miRNA: downregulated.