Influence of endurance and resistance exercise order on the postexercise hemodynamic responses in hypertensive women

J Strength Cond Res. 2015 Mar;29(3):612-8. doi: 10.1519/JSC.0000000000000676.

Abstract

The study aims to evaluate the effects of the order of endurance and resistance exercises on postexercise blood pressure (BP) and hemodynamics in hypertensive women. Nineteen hypertensive women underwent 3 sessions: control (50 minutes rest), endurance (50-60% of heart rate reserve) followed by resistance exercise (50% of 1 repetition maximum) (E + R), and resistance followed by endurance exercise (R + E). Before and 30 minutes after each session, BP, peripheral vascular resistance, cardiac output, stroke volume, and heart rate were measured. Postexercise increases in systolic (E + R: +1 ± 3 mm Hg and R + E: +3 ± 3 mm Hg), diastolic (E + R: +3 ± 1 mm Hg and R + E: +3 ± 2 mm Hg), and mean BP (E + R: +3 ± 1 mm Hg and R + E: +3 ± 2 mm Hg) were significantly lower after the exercise sessions compared with the control session (p ≤ 0.05). The exercise sessions abolished the increases in peripheral vascular resistance (E + R: +0.00 ± 0.04 mm Hg·min·L and R + E: +0.05 ± 0.05 mm Hg·min·L) and the decreases in cardiac output (E + R: +0.04 ± 0.28 L·min and R + E: -0.26 ± 0.28 L·min) observed after the control session (p ≤ 0.05). After the exercise sessions, stroke volume decreased (E + R: -14 ± 3 ml and R + E: -9 ± 4 ml) and heart rate increased (E + R: +5 ± 1 b·min and R + E: +4 ± 1 b·min) in comparison with the control session (p ≤ 0.05). For all the variables, there were no significant differences between the exercise sessions. Regardless of the order of endurance and resistance exercises, combined exercise sessions abolished increases in BP observed in a control condition due to a reduction in peripheral vascular resistance and increases in cardiac output. Thus, combined exercises should be prescribed to individuals with hypertension to control their BP, regardless of the order they are accomplished.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiac Output / physiology
  • Female
  • Heart Rate / physiology
  • Hemodynamics / physiology
  • Humans
  • Hypertension / physiopathology*
  • Middle Aged
  • Physical Endurance / physiology*
  • Resistance Training*
  • Stroke Volume / physiology
  • Vascular Resistance / physiology