Format

Send to

Choose Destination
Expert Opin Drug Discov. 2015 Jan;10(1):1-8. doi: 10.1517/17460441.2015.962510. Epub 2014 Sep 29.

Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery.

Author information

1
J.W. Goethe University, School of Medicine, Department of Obstetrics and Gynecology , Theodor-Stern-Kai 7, 60590 Frankfurt , Germany +49 69 6301 6894 ; +49 69 6301 6364 ; strebhardt@em.uni-frankfurt.de.

Abstract

The Polo-like kinase 1 (Plk1) plays a key role in regulating a broad spectrum of critical cell cycle events. Plk1 is a marker of cellular proliferation and has prognostic potential in different types of human tumors. In a series of preclinical studies, Plk1 has been validated as a cancer target. This prompted many pharmaceutical companies to develop small-molecule inhibitors targeting the classical ATP-binding site of Plk1 for anticancer drug development. Recently, FDA has granted a Breakthrough Therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. Remarkably, a new generation of Plk1 inhibitors that target the second druggable domain of Plk1, the Polo-box domain, is currently being tested preclinically. Since various ATP-competitive compounds of Plk1 inhibit also the activities of Plk2 and Plk3, which act as tumor suppressors, the roles of closely related Plk-family members in cancer cells need to be considered carefully. In this article, the authors highlight recent insights into the biology of Plks in cancer cells and discuss the progress in the development of small-molecule Plk1 inhibitors. The authors believe that the greatest therapeutic benefit might come through leukemic cells that are in direct contact with the inhibitor in the blood stream. The identification of biomarkers and studies that document Plk activities in treated patients would also be beneficial to better understand the role of Plk inhibition in tumor development and anticancer therapy.

KEYWORDS:

cell cycle; drug discovery; kinase inhibitors; polo-like kinase

PMID:
25263688
DOI:
10.1517/17460441.2015.962510
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center