Format

Send to

Choose Destination
Nat Commun. 2014 Sep 29;5:5072. doi: 10.1038/ncomms6072.

XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation.

Author information

1
1] Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
2
1] Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
3
Department of Biological Physical Chemistry, Spanish National Research Council (CSIC), Institute of Physical Chemistry 'Rocasolano', Serrano 119, 28006 Madrid, Spain.
4
Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain.
5
Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain.
6
1] Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain [2] IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
7
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University, Gustav Wieds Vej 14, Building 1590-252, 8000 Aarhus C, Denmark.
8
1] Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain [3] Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.

Abstract

chTOG is a conserved microtubule polymerase that catalyses the addition of tubulin dimers to promote microtubule growth. chTOG interacts with TACC3, a member of the transforming acidic coiled-coil (TACC) family. Here we analyse their association using the Xenopus homologues, XTACC3 (TACC3) and XMAP215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215 molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP215 by increasing its local concentration, thereby promoting efficient microtubule elongation during mitosis.

PMID:
25262927
PMCID:
PMC4200520
DOI:
10.1038/ncomms6072
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center