Format

Send to

Choose Destination
Int J Syst Evol Microbiol. 2014 Dec;64(Pt 12):4147-54. doi: 10.1099/ijs.0.068148-0. Epub 2014 Sep 23.

Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta.

Author information

1
Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.
2
Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
3
Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
4
Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan.
5
Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan imachi@jamstec.go.jp.

Abstract

An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed.

PMID:
25249566
DOI:
10.1099/ijs.0.068148-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center