Oxygen-atom transfer reactivity of axially ligated Mn(V)-oxo complexes: evidence for enhanced electrophilic and nucleophilic pathways

J Am Chem Soc. 2014 Oct 1;136(39):13845-52. doi: 10.1021/ja507177h. Epub 2014 Sep 19.

Abstract

Addition of anionic donors to the manganese(V)-oxo corrolazine complex Mn(V)(O)(TBP8Cz) has a dramatic influence on oxygen-atom transfer (OAT) reactivity with thioether substrates. The six-coordinate anionic [Mn(V)(O)(TBP8Cz)(X)](-) complexes (X = F(-), N3(-), OCN(-)) exhibit a ∼5 cm(-1) downshift of the Mn-O vibrational mode relative to the parent Mn(V)(O)(TBP8Cz) complex as seen by resonance Raman spectroscopy. Product analysis shows that the oxidation of thioether substrates gives sulfoxide product, consistent with single OAT. A wide range of OAT reactivity is seen for the different axial ligands, with the following trend determined from a comparison of their second-order rate constants for sulfoxidation: five-coordinate ≈ thiocyanate ≈ nitrate < cyanate < azide < fluoride ≪ cyanide. This trend correlates with DFT calculations on the binding of the axial donors to the parent Mn(V)(O)(TBP8Cz) complex. A Hammett study was performed with p-X-C6H4SCH3 derivatives and [Mn(V)(O)(TBP8Cz)(X)](-) (X = CN(-) or F(-)) as the oxidant, and unusual "V-shaped" Hammett plots were obtained. These results are rationalized based upon a change in mechanism that hinges on the ability of the [Mn(V)(O)(TBP8Cz)(X)](-) complexes to function as either an electrophilic or weak nucleophilic oxidant depending upon the nature of the para-X substituents. For comparison, the one-electron-oxidized cationic Mn(V)(O)(TBP8Cz(•+)) complex yielded a linear Hammett relationship for all substrates (ρ = -1.40), consistent with a straightforward electrophilic mechanism. This study provides new, fundamental insights regarding the influence of axial donors on high-valent Mn(V)(O) porphyrinoid complexes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ligands
  • Manganese / chemistry*
  • Molecular Structure
  • Organometallic Compounds / chemistry*
  • Oxygen / chemistry*
  • Porphyrins / chemistry*
  • Quantum Theory

Substances

  • Ligands
  • Organometallic Compounds
  • Porphyrins
  • Manganese
  • Oxygen