Heterochromatin characterization and ribosomal gene location in two monotypic genera of bloodsucker bugs (Cimicidae, Heteroptera) with holokinetic chromosomes and achiasmatic male meiosis

Bull Entomol Res. 2014 Dec;104(6):788-93. doi: 10.1017/S0007485314000650. Epub 2014 Sep 11.

Abstract

Members of the family Cimicidae (Heteroptera: Cimicomorpha) are temporary bloodsuckers on birds and bats as primary hosts and humans as secondary hosts. Acanthocrios furnarii (2n=12=10+XY, male) and Psitticimex uritui (2n=31=28+X1X2Y, male) are two monotypic genera of the subfamily Haematosiphoninae, which have achiasmatic male meiosis of collochore type. Here, we examined chromatin organization and constitution of cimicid holokinetic chromosomes by determining the amount, composition and distribution of constitutive heterochromatin, and number and location of nucleolus organizer regions (NORs) in both species. Results showed that these two bloodsucker bugs possess high heterochromatin content and have an achiasmatic male meiosis, in which three regions can be differentiated in each autosomal bivalent: (i) terminal heterochromatic regions in repulsion; (ii) a central region, where the homologous chromosomes are located parallel but without contact between them; and (iii) small areas within the central region, where collochores are detected. Acanthocrios furnarii presented a single NOR on an autosomal pair, whereas P. uritui presented two NORs, one on an autosomal pair and the other on a sex chromosome. All NORs were found to be associated with CMA3 bright bands, indicating that the whole rDNA repeating unit is rich in G+C base pairs. Based on the variations in the diploid autosomal number, the presence of simple and multiple sex chromosome systems, and the number and location of 18S rDNA loci in the two Cimicidae species studied, we might infer that rDNA clusters and genome are highly dynamic among the representatives of this family.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromosomes, Insect / chemistry*
  • Chromosomes, Insect / genetics
  • Cimicidae / genetics*
  • Heterochromatin / chemistry*
  • Heterochromatin / genetics
  • In Situ Hybridization, Fluorescence
  • Karyotype*
  • Male
  • Meiosis
  • Species Specificity

Substances

  • Heterochromatin