Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells

J Biol Chem. 2014 Oct 24;289(43):30075-81. doi: 10.1074/jbc.M114.578781. Epub 2014 Sep 8.

Abstract

Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Our previously study demonstrated that PXR is expressed in endothelial cells (ECs) and acts as a master regulator of detoxification genes to protect ECs against xenobiotics. Vascular endothelial cells are key sentinel cells to sense the pathogens and xenobiotics. In this study, we examined the potential function of PXR in the regulation of innate immunity in vasculatures. Treatments with PXR agonists or overexpression of a constitutively active PXR in cultured ECs increased gene expression of the key pattern recognition receptors, including Toll-like receptors (TLR-2, -4, -9) and NOD-like receptors (NOD-1 and -2 and NLRP3). In particular, PXR agonism triggered the activation of NLRP3 inflammasome and the ensuing cleavage and maturation of caspase-1 and interleukin-1β (IL-1β). Conversely, selective antagonism or gene silencing of PXR abrogated NLRP3 inflammasome activation. In addition, we identified NLRP3 as a transcriptional target of PXR by using the promoter-reporter and ChIP assays. In summary, our findings revealed a novel regulatory mechanism of innate immune by PXR, which may act as a master transcription factor controlling the convergence between the detoxification of xenobiotics and the innate immunity against them.

Keywords: Cellular Immune Response; Endothelial Cell; Innate Immunity; Nod-like Receptor (NLR); Pattern Recognition Receptor (PRR); Toll-like Receptor (TLR); Transcription Factor; Xenobiotic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Cattle
  • Endothelial Cells / metabolism*
  • Gene Expression Regulation
  • Gene Knockdown Techniques
  • Hep G2 Cells
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Immunity, Innate*
  • Inflammasomes / metabolism*
  • Molecular Sequence Data
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Pregnane X Receptor
  • Receptors, Pattern Recognition / genetics
  • Receptors, Pattern Recognition / metabolism
  • Receptors, Steroid / agonists
  • Receptors, Steroid / antagonists & inhibitors
  • Receptors, Steroid / metabolism*
  • Response Elements / genetics
  • Xenobiotics / metabolism*

Substances

  • Carrier Proteins
  • Inflammasomes
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • NLRP3 protein, human
  • Pregnane X Receptor
  • Receptors, Pattern Recognition
  • Receptors, Steroid
  • Xenobiotics