Format

Send to

Choose Destination
Appl Health Econ Health Policy. 2014 Dec;12(6):573-85. doi: 10.1007/s40258-014-0124-7.

Using decision trees to manage hospital readmission risk for acute myocardial infarction, heart failure, and pneumonia.

Author information

1
Department of Health Economics, UPMC Health Plan, U.S. Steel Tower, 9th Floor, 600 Grant Street, Pittsburgh, PA, 15219, USA.

Abstract

To improve healthcare quality and reduce costs, the Affordable Care Act places hospitals at financial risk for excessive readmissions associated with acute myocardial infarction (AMI), heart failure (HF), and pneumonia (PN). Although predictive analytics is increasingly looked to as a means for measuring, comparing, and managing this risk, many modeling tools require data inputs that are not readily available and/or additional resources to yield actionable information. This article demonstrates how hospitals and clinicians can use their own structured discharge data to create decision trees that produce highly transparent, clinically relevant decision rules for better managing readmission risk associated with AMI, HF, and PN. For illustrative purposes, basic decision trees are trained and tested using publically available data from the California State Inpatient Databases and an open-source statistical package. As expected, these simple models perform less well than other more sophisticated tools, with areas under the receiver operating characteristic (ROC) curve (or AUC) of 0.612, 0.583, and 0.650, respectively, but achieve a lift of at least 1.5 or greater for higher-risk patients with any of the three conditions. More importantly, they are shown to offer substantial advantages in terms of transparency and interpretability, comprehensiveness, and adaptability. By enabling hospitals and clinicians to identify important factors associated with readmissions, target subgroups of patients at both high and low risk, and design and implement interventions that are appropriate to the risk levels observed, decision trees serve as an ideal application for addressing the challenge of reducing hospital readmissions.

PMID:
25160603
DOI:
10.1007/s40258-014-0124-7
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center