Format

Send to

Choose Destination
Nat Chem Biol. 2014 Oct;10(10):823-9. doi: 10.1038/nchembio.1608. Epub 2014 Aug 17.

Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis.

Author information

1
1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [3].
2
1] Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2].
3
1] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
4
1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
5
1] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [3] Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
6
1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [3] Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Abstract

Despite intensive research, the cyclodehydratase responsible for azoline biogenesis in thiazole/oxazole-modified microcin (TOMM) natural products remains enigmatic. The collaboration of two proteins, C and D, is required for cyclodehydration. The C protein is homologous to E1 ubiquitin-activating enzymes, whereas the D protein is within the YcaO superfamily. Recent studies have demonstrated that TOMM YcaOs phosphorylate amide carbonyl oxygens to facilitate azoline formation. Here we report the X-ray crystal structure of an uncharacterized YcaO from Escherichia coli (Ec-YcaO). Ec-YcaO harbors an unprecedented fold and ATP-binding motif. This motif is conserved among TOMM YcaOs and is required for cyclodehydration. Furthermore, we demonstrate that the C protein regulates substrate binding and catalysis and that the proline-rich C terminus of the D protein is involved in C protein recognition and catalysis. This study identifies the YcaO active site and paves the way for the characterization of the numerous YcaO domains not associated with TOMM biosynthesis.

PMID:
25129028
PMCID:
PMC4167974
DOI:
10.1038/nchembio.1608
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center