Format

Send to

Choose Destination
Stem Cell Res. 2014 Nov;13(3 Pt B):542-55. doi: 10.1016/j.scr.2014.07.003. Epub 2014 Jul 19.

Advances in understanding the mechanism of zebrafish heart regeneration.

Author information

1
Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington, NSW 2052, Australia. Electronic address: k.kikuchi@victorchang.edu.au.

Abstract

The adult mammalian heart was once believed to be a post-mitotic organ without any capacity for regeneration, but recent findings have challenged this dogma. A modified view assigns the mammalian heart a measurable capacity for regeneration throughout its lifetime, with the implication that endogenous regenerative capacity can be therapeutically stimulated in the injury setting. Although extremely limited in adult mammals, the natural capacity for organ regeneration is a conserved trait in certain vertebrates. Urodele amphibians and teleosts are well-known examples of such animals that can efficiently regenerate various organs including the heart as adults. By understanding how these animals regenerate a damaged heart, one might obtain valuable insights into how regeneration can be augmented in injured human hearts. Among the regenerative vertebrate models, the teleost zebrafish, Danio rerio, is arguably the best characterized with respect to cardiac regenerative responses. Knowledge is still limited, but a decade of research in this model has led to results that may help to understand how cardiac regeneration is naturally stimulated and maintained. This review surveys recent advances in the field and discusses current understanding of the endogenous mechanisms of cardiac regeneration in zebrafish.

PMID:
25127427
DOI:
10.1016/j.scr.2014.07.003
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center