Format

Send to

Choose Destination
EMBO J. 2014 Oct 1;33(19):2216-30. doi: 10.15252/embj.201387038. Epub 2014 Aug 14.

The miR-379/miR-410 cluster at the imprinted Dlk1-Dio3 domain controls neonatal metabolic adaptation.

Author information

1
Laboratoire de Biologie Moléculaire Eucaryote, UPS Université de Toulouse, Toulouse, France CNRS LBME, UMR5099, Toulouse, France.
2
Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse Université Paul Sabatier, Toulouse, France.
3
Laboratoire de Biologie Moléculaire Eucaryote, UPS Université de Toulouse, Toulouse, France CNRS LBME, UMR5099, Toulouse, France INRA UMR1331 TOXALIM (Research Centre in Food Toxicology), Toulouse, France Université de Toulouse INP UPS TOXALIM, Toulouse, France.
4
Laboratoire de Biologie Moléculaire Eucaryote, UPS Université de Toulouse, Toulouse, France CNRS LBME, UMR5099, Toulouse, France cavaille@ibcg.biotoul.fr.

Abstract

In mammals, birth entails complex metabolic adjustments essential for neonatal survival. Using a mouse knockout model, we identify crucial biological roles for the miR-379/miR-410 cluster within the imprinted Dlk1-Dio3 region during this metabolic transition. The miR-379/miR-410 locus, also named C14MC in humans, is the largest known placental mammal-specific miRNA cluster, whose 39 miRNA genes are expressed only from the maternal allele. We found that heterozygote pups with a maternal--but not paternal--deletion of the miRNA cluster display partially penetrant neonatal lethality with defects in the maintenance of energy homeostasis. This maladaptive metabolic response is caused, at least in part, by profound changes in the activation of the neonatal hepatic gene expression program, pointing to as yet unidentified regulatory pathways that govern this crucial metabolic transition in the newborn's liver. Not only does our study highlight the physiological importance of miRNA genes that recently evolved in placental mammal lineages but it also unveils additional layers of RNA-mediated gene regulation at the Dlk1-Dio3 domain that impose parent-of-origin effects on metabolic control at birth and have likely contributed to mammal evolution.

KEYWORDS:

epigenetic; genomic imprinting; metabolic adaptation; microRNA; mouse model

PMID:
25124681
PMCID:
PMC4282508
DOI:
10.15252/embj.201387038
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center