Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nutr. 2014 Oct;144(10):1540-8. doi: 10.3945/jn.114.194001. Epub 2014 Aug 13.

Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells.

Author information

1
State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX.
2
State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and bio2046@hotmail.com.
3
State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and.
4
Department of Animal Science, Texas A&M University, College Station, TX.

Abstract

Glycine has recently been classified as a nutritionally essential amino acid for maximal growth in young pigs. Currently, little is known about the metabolism or function of glycine in the neonatal intestine. This work was conducted to test the hypothesis that glycine has a protective effect against oxidative stress in intestinal epithelial cells. Jejunal enterocytes isolated from newborn pigs were cultured in the presence of 0.0-2 mmol/L glycine for measurements of glycine metabolism, cell proliferation, protein turnover, apoptosis, and antioxidative response. Compared with 0.0-0.5 mmol/L glycine, 1.0 mmol/L glycine enhanced (P < 0.05) cell growth (by 8-24% on day 2 and by 34-224% on day 4, respectively) and protein synthesis (by 36-419%) while reducing (P < 0.05) protein degradation (by 7-28%). This effect of glycine was associated with activation of the mammalian target of rapamycin signaling pathway in enterocytes. By using a model of oxidative stress induced by 30 μmol/L 4-hydroxynonenal (4-HNE), which was assessed by flow cytometry analysis, 1.0 mmol/L glycine inhibited (P < 0.05) activation of caspase 3 by 25% and attenuated (P < 0.05) 4-HNE-induced apoptosis by 38% in intestinal porcine epithelial cell line 1 cells through promotion of reduced glutathione synthesis and expression of glycine transporter 1 while reducing the activation of extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 protein in the mitogen-activated protein kinase signaling pathway. These novel findings provide a biochemical mechanism for the use of dietary glycine to improve intestinal health in neonates under conditions of oxidative stress and glycine deficiency.

PMID:
25122646
DOI:
10.3945/jn.114.194001
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center