Format

Send to

Choose Destination
Antimicrob Agents Chemother. 2014 Nov;58(11):6385-97. doi: 10.1128/AAC.03482-14. Epub 2014 Aug 11.

Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates.

Author information

1
Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
2
Laboratoire de Microbiologie et Centre de Référence Belge des Staphylocoques, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
3
Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium francoise.vanbambeke@uclouvain.be.

Abstract

Biofilm-related infections remain a scourge. In an in vitro model of biofilms using Staphylococcus aureus reference strains, delafloxacin and daptomycin were found to be the most active among the antibiotics from 8 different pharmacological classes (J. Bauer, W. Siala, P. M. Tulkens, and F. Van Bambeke, Antimicrob. Agents Chemother. 57:2726-2737, 2013, doi:10.1128/AAC.00181-13). In this study, we compared delafloxacin to daptomycin and vancomycin using biofilms produced by 7 clinical strains (S. aureus epidemic clones CC5 and CC8) in order to rationalize the differences observed between the antibiotics and strains. The effects of the antibiotics on bacterial viability (resazurin reduction assay) and biomass (crystal violet staining) were measured and correlated with the proportion of polysaccharides in the matrix, the local microenvironmental pH (micro-pH), and the antibiotic penetration in the biofilm. At clinically meaningful concentrations, delafloxacin, daptomycin, and vancomycin caused a ≥25% reduction in viability against the biofilms formed by 5, 4, and 3 strains, respectively. The antibiotic penetration within the biofilms ranged from 0.6 to 52% for delafloxacin, 0.2 to 10% for daptomycin, and 0.2 to 1% for vancomycin; for delafloxacin, this was inversely related to the polysaccharide proportion in the matrix. Six biofilms were acidic, explaining the high potency of delafloxacin (lower MICs at acidic pH). Norspermidine and norspermine (disassembling the biofilm matrix) drastically increased delafloxacin potency and efficacy (50% reduction in viability for 6 biofilms at clinically meaningful concentrations) in direct correlation with its increased penetration within the biofilm, while they only modestly improved daptomycin efficacy (50% reduction in viability for 2 biofilms) and penetration, and they showed marginal effects with vancomycin. Delafloxacin potency and efficacy against biofilms are benefited by its penetration into the matrix and the local acidic micro-pH.

PMID:
25114142
PMCID:
PMC4249400
DOI:
10.1128/AAC.03482-14
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center