Format

Send to

Choose Destination
Curr Nutr Rep. 2014 Apr 27;3:204-212. eCollection 2014.

Nutrients, Clock Genes, and Chrononutrition.

Author information

1
Food Function Division, National Food Research Institute (NFRI), National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan ; Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan.
2
Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan ; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan ; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan.
3
Food Function Division, National Food Research Institute (NFRI), National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan.

Abstract

Circadian clocks that comprise clock genes exist throughout the body and control daily physiological events. The central clock that dominates activity rhythms is entrained by light/dark cycles, whereas peripheral clocks regulating local metabolic rhythms are determined by feeding/fasting cycles. Nutrients reset peripheral circadian clocks and the local clock genes control downstream metabolic processes. Metabolic states also affect the clockworks in feedback manners. Because the circadian system organizes whole energy homeostasis, including food intake, fat accumulation, and caloric expenditure, the disruption of circadian clocks leads to metabolic disorders. Recent findings show that time-restricted feeding during the active phase amplifies circadian clocks and improves metabolic disorders induced by a high-fat diet without caloric reduction, whereas unusual/irregular food intake induces various metabolic dysfunctions. Such evidence from nutrition studies that consider circadian system (chrononutrition) has rapidly accumulated. We review molecular relationships between circadian clocks and nutrition as well as recent chrononutrition findings.

KEYWORDS:

Breakfast; Chrononutrition; Circadian clocks; Circadian rhythm; Clock genes; High-fat diet; Meal timing; Metabolic disorders; Nutrition

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center