Send to

Choose Destination
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.

Microfluidic organs-on-chips.

Author information

1] Department of Electrical Engineering &Computer Science, Koch Institute and Institute for Medical Engineering and Science, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
1] Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA. [2] Vascular Biology Program, Departments of Pathology &Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.


An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center