Format

Send to

Choose Destination
See comment in PubMed Commons below
Leukemia. 2015 Mar;29(3):647-59. doi: 10.1038/leu.2014.233. Epub 2014 Aug 5.

Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.

Author information

  • 11] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany.
  • 2Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.
  • 3Hospital Group South-West, Department of Orthopedics, Calw, Germany.
  • 4Institute for Clinical and Experimental Transfusion Medicine, University of Tübingen, Tübingen, Germany.
  • 51] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • 6Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany.
  • 71] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.

Abstract

Identification of physiologically relevant peptide vaccine targets calls for the direct analysis of the entirety of naturally presented human leukocyte antigen (HLA) ligands, termed the HLA ligandome. In this study, we implemented this direct approach using immunoprecipitation and mass spectrometry to define acute myeloid leukemia (AML)-associated peptide vaccine targets. Mapping the HLA class I ligandomes of 15 AML patients and 35 healthy controls, more than 25 000 different naturally presented HLA ligands were identified. Target prioritization based on AML exclusivity and high presentation frequency in the AML cohort identified a panel of 132 LiTAAs (ligandome-derived tumor-associated antigens), and 341 corresponding HLA ligands (LiTAPs (ligandome-derived tumor-associated peptides)) represented subset independently in >20% of AML patients. Functional characterization of LiTAPs by interferon-γ ELISPOT (Enzyme-Linked ImmunoSpot) and intracellular cytokine staining confirmed AML-specific CD8(+) T-cell recognition. Of note, our platform identified HLA ligands representing several established AML-associated antigens (e.g. NPM1, MAGED1, PRTN3, MPO, WT1), but found 80% of them to be also represented in healthy control samples. Mapping of HLA class II ligandomes provided additional CD4(+) T-cell epitopes and potentially synergistic embedded HLA ligands, allowing for complementation of a multipeptide vaccine for the immunotherapy of AML.

PMID:
25092142
DOI:
10.1038/leu.2014.233
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center