Format

Send to

Choose Destination
J Chem Phys. 2014 Jul 28;141(4):044127. doi: 10.1063/1.4890839.

FDE-vdW: A van der Waals inclusive subsystem density-functional theory.

Author information

1
Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA.
2
Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, USA.

Abstract

We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

PMID:
25084901
DOI:
10.1063/1.4890839

Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center