Send to

Choose Destination
Acta Endocrinol (Copenh). 1989 Sep;121(3):447-55.

Modulation of calcium flux influences interleukin 1 beta effects on insulin release from isolated islets of Langerhans.

Author information

Steno Memorial Hospital, Gentofte, Denmark.


The controlled flux of calcium across the cell membrane is intimately linked to the release of insulin from pancreatic beta-cells, but the uncontrolled influx of calcium is a common final denominator of cell death. Because interleukin 1 has been shown to be cytotoxic to beta-cells in isolated rat islets of Langerhans and since interleukin 1 has a calcium ionophore effect on other cell types, this study was designed to test whether alterations of the calcium flux across the beta-cell membrane would influence the effects of interleukin 1 on isolated rat and mouse islets. Further, the cytosolic free Ca2+ concentration was measured by the fura-2 method in rat islets during acute interleukin 1 exposure. Treatment with 10 mumol/l of verapamil (a potent blocker of the voltage-dependent calcium channel) tended to suppress the inhibitory effect of interleukin 1 on insulin release from rat islets, suggesting protection against cytotoxicity. Conversely, a stimulatory effect of interleukin 1 on mouse islets during 6 days of exposure to interleukin 1 was turned into inhibition by high extracellular calcium concentration. Interleukin 1 did not have any acute effect on cytosolic free Ca2+ concentration. In conclusion, interleukin 1 has no specific calcium ionophore effect on beta-cells, but alterations of the calcium flux across the beta-cell membrane influence the functional effects of interleukin 1, suggesting interference with cell function and toxicity, which would likely be accompanied by an uncontrolled influx of calcium.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center