Format

Send to

Choose Destination
Acta Endocrinol (Copenh). 1989 Sep;121(3):447-55.

Modulation of calcium flux influences interleukin 1 beta effects on insulin release from isolated islets of Langerhans.

Author information

1
Steno Memorial Hospital, Gentofte, Denmark.

Abstract

The controlled flux of calcium across the cell membrane is intimately linked to the release of insulin from pancreatic beta-cells, but the uncontrolled influx of calcium is a common final denominator of cell death. Because interleukin 1 has been shown to be cytotoxic to beta-cells in isolated rat islets of Langerhans and since interleukin 1 has a calcium ionophore effect on other cell types, this study was designed to test whether alterations of the calcium flux across the beta-cell membrane would influence the effects of interleukin 1 on isolated rat and mouse islets. Further, the cytosolic free Ca2+ concentration was measured by the fura-2 method in rat islets during acute interleukin 1 exposure. Treatment with 10 mumol/l of verapamil (a potent blocker of the voltage-dependent calcium channel) tended to suppress the inhibitory effect of interleukin 1 on insulin release from rat islets, suggesting protection against cytotoxicity. Conversely, a stimulatory effect of interleukin 1 on mouse islets during 6 days of exposure to interleukin 1 was turned into inhibition by high extracellular calcium concentration. Interleukin 1 did not have any acute effect on cytosolic free Ca2+ concentration. In conclusion, interleukin 1 has no specific calcium ionophore effect on beta-cells, but alterations of the calcium flux across the beta-cell membrane influence the functional effects of interleukin 1, suggesting interference with cell function and toxicity, which would likely be accompanied by an uncontrolled influx of calcium.

PMID:
2508388
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center