Format

Send to

Choose Destination
Biotechnol Bioeng. 2015 Jan;112(1):181-8. doi: 10.1002/bit.25347. Epub 2014 Sep 26.

Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae.

Author information

1
Department of Chemical and Biological Engineering, Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-41296, Göteborg, Sweden.

Abstract

Efficient production of appropriate oxygen carriers for transfusions (blood substitutes or artificial blood) has been pursued for many decades, and to date several strategies have been used, from synthetic polymers to cell-free hemoglobin carriers. The recent advances in the field of metabolic engineering also allowed the generation of different genetically modified organisms for the production of recombinant human hemoglobin. Several studies have showed very promising results using the bacterium Escherichia coli as a production platform, reporting hemoglobin titers above 5% of the total cell protein content. However, there are still certain limitations regarding the protein stability and functionality of the recombinant hemoglobin produced in bacterial systems. In order to overcome these limitations, yeast systems have been proposed as the eukaryal alternative. We recently reported the generation of a set of plasmids to produce functional human hemoglobin in Saccharomyces cerevisiae, with final titers of active hemoglobin exceeding 4% of the total cell protein. In this study, we propose a strategy for further engineering S. cerevisiae by altering the oxygen sensing pathway by deleting the transcription factor HAP1, which resulted in an increase of the final recombinant active hemoglobin titer exceeding 7% of the total cellular protein.

KEYWORDS:

HAP1; HEM13; heme biosynthesis; human hemoglobin; protein production

PMID:
25082441
DOI:
10.1002/bit.25347
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center