Send to

Choose Destination
Proc SPIE Int Soc Opt Eng. 2013 Mar 13;8669:86690H.

Parsing radiographs by integrating landmark set detection and multi-object active appearance models.

Author information

GE Global Research Center One Research Circle, Niskayuna, NY, 12309 USA.


This work addresses the challenging problem of parsing 2D radiographs into salient anatomical regions such as the left and right lungs and the heart. We propose the integration of an automatic detection of a constellation of landmarks via rejection cascade classifiers and a learned geometric constellation subset detector model with a multi-object active appearance model (MO-AAM) initialized by the detected landmark constellation subset. Our main contribution is twofold. First, we propose a recovery method for false positive and negative landmarks which allows to handle extreme ranges of anatomical and pathological variability. Specifically we (1) recover false negative (missing) landmarks through the consensus of inferences from subsets of the detected landmarks, and (2) choose one from multiple false positives for the same landmark by learning Gaussian distributions for the relative location of each landmark. Second, we train a MO-AAM using the true landmarks for the detectors and during test, initialize the model using the detected landmarks. Our model fitting allows simultaneous localization of multiple regions by encoding the shape and appearance information of multiple objects in a single model. The integration of landmark detection method and MO-AAM reduces mean distance error of the detected landmarks from 20.0mm to 12.6mm. We assess our method using a database of scout CT scans from 80 subjects with widely varying pathology.


active appearance model; automatic landmark localization; image parsing; organ localization; radiograph; rejection cascade

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center