Send to

Choose Destination
J Am Chem Soc. 2014 Aug 6;136(31):11027-33. doi: 10.1021/ja504696r. Epub 2014 Jul 24.

Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions.

Author information

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei 230026, China.


In this work, we report the synthesis and assessment of a new non-precious-metal oxygen reduction reaction (ORR) catalyst from pyrolysis of an iron-coordinated complex which manifests superior activity in both alkaline and acidic media. 11,11'-bis(dipyrido[3,2-a:2',3'-c]phenazinyl) (bidppz) was selected as a ligand for the formation of a nitrogen-rich iron-coordinated coordination polymer (Fe-bidppz) which forms a self-supporting catalyst containing high densities of nitrogen and iron doping by pyrolysis. The catalyst pyrolyzed at 800 °C (Fe-N/C-800) shows the highest ORR activity with onset and half-wave potentials of 923 and 809 mV in 0.1 M KOH, respectively, which are comparable to those of Pt/C (half-wave potential 818 mV vs RHE) at the same catalyst loading. Besides, the Fe-N/C-800 catalyst has an excellent ORR activity with onset and half-wave potentials only 38 and 59 mV less than those of the Pt/C catalyst in 0.1 M HClO4. The optimal Fe-N/C-800 catalyst displays much greater durability and tolerance of methanol than Pt/C. We propose that the Fe-N/C-800 catalyst has a considerably high density of surface active sites because Fe-N/C-800 possesses excellent ORR activity while its specific surface area is not so high. Electrochemical measurements show that the Fe-N/C-800 catalyst in KOH and HClO4 follows the effective four-electron-transfer pathway.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center