Format

Send to

Choose Destination
J Genomics. 2014 Jan 2;2:1-19. doi: 10.7150/jgen.5054. eCollection 2014.

Meta-analysis of candidate gene effects using bayesian parametric and non-parametric approaches.

Author information

1
1. Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA; ; 2. Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA;
2
1. Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA; ; 2. Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA; ; 3. Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA.
3
2. Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA; ; 3. Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA.
4
1. Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA;

Abstract

Candidate gene (CG) approaches provide a strategy for identification and characterization of major genes underlying complex phenotypes such as production traits and susceptibility to diseases, but the conclusions tend to be inconsistent across individual studies. Meta-analysis approaches can deal with these situations, e.g., by pooling effect-size estimates or combining P values from multiple studies. In this paper, we evaluated the performance of two types of statistical models, parametric and non-parametric, for meta-analysis of CG effects using simulated data. Both models estimated a "central" effect size while taking into account heterogeneity over individual studies. The empirical distribution of study-specific CG effects was multi-modal. The parametric model assumed a normal distribution for the study-specific CG effects whereas the non-parametric model relaxed this assumption by posing a more general distribution with a Dirichlet process prior (DPP). Results indicated that the meta-analysis approaches could reduce false positive or false negative rates by pooling strengths from multiple studies, as compared to individual studies. In addition, the non-parametric, DPP model captured the variation of the "data" better than its parametric counterpart.

KEYWORDS:

Bayesian models; Dirichlet process prior; Markov chain Monte Carlo; candidate genes; meta-analysis.

Supplemental Content

Full text links

Icon for Ivyspring International Publisher Icon for PubMed Central
Loading ...
Support Center