Format

Send to

Choose Destination
Res Microbiol. 2014 Sep;165(7):566-70. doi: 10.1016/j.resmic.2014.07.003. Epub 2014 Jul 15.

Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli.

Author information

1
Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile; Laboratorio de Microbiología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
2
Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile; Centro Nacional de Genómica y Bioinformática, Santiago, Chile.
3
Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile; Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile.
4
Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
5
Laboratorio de Genómica Aplicada, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
6
Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, República 239, Santiago, Chile.
7
Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile. Electronic address: claudio.vasquez@usach.cl.

Abstract

Tellurite (TeO3(2-)) is harmful for most microorganisms, especially Gram-negative bacteria. Even though tellurite toxicity involves a number of individual aspects, including oxidative stress, malfunctioning of metabolic enzymes and a drop in the reduced thiol pool, among others, the general mechanism of toxicity is rather complex and not completely understood to date. This work focused on DNA microarray analysis to evaluate the Escherichia coli global transcriptomic response when exposed to the toxicant. Confirming previous results, the induction of the oxidative stress response regulator soxS was observed. Upregulation of a number of genes involved in the global stress response, protein folding, redox processes and cell wall organization was also detected. In addition, downregulation of aerobic respiration-related genes suggested a metabolic switch to anaerobic respiration. The expression results were validated through oxygen consumption experiments, which corroborated that tellurite-exposed cells effectively consume oxygen at lower rates than untreated controls.

KEYWORDS:

Anaerobic respiration; Microarrays; Oxidative stress; Tellurite

PMID:
25049169
DOI:
10.1016/j.resmic.2014.07.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center