Send to

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14345-52. doi: 10.1021/am503599k. Epub 2014 Jul 29.

Tailoring pigment dispersants with polyisobutylene twin-tail structures for electrowetting display application.

Author information

Institute of Polymer Science and Engineering, National Taiwan University , Taipei 10617, Taiwan.


We have designed a class of highly hydrophobic dispersants for finely dispersing carbon black and organic pigment nanoparticles in apolar mediums. The synthesis involved the use of polyisobutylene-g-succinic anhydride (PIB-SA) and judiciously selected amines by amidation and imidation. The structures were characterized by infrared spectroscopy for anhydride functionalities in the starting materials and amide/imide linkages in the products. These polymeric forms of dispersants were structurally varied with respects to their PIB molecular weight, twin-tails, and linkages. Their relative performance for dispersing six different pigments in decane was evaluated against solution homogeneity, viscosity, stability, and particle size. The fine dispersion was achieved at particle sizes of ca. 100 nm, with the viscosity as low as 2-3 cP. The measurement of zeta potentials, which varied from -39.8 to -5.1 mV with pigment addition, revealed a strong surface-charge interaction between pigment and PIB dispersant molecules. Examination by TEM (transmission electronic microscope) showed the homogeneous dispersion of the primary structures of pigment particles at ca. 20 nm in diameter. The polymeric dispersants with different PIB tails and imide functionalities could be tailored for pigment stability in the oil phase, which is potentially suitable for the electrowetting devices.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center