Format

Send to

Choose Destination
Nature. 2014 Aug 21;512(7514):324-7. doi: 10.1038/nature13387. Epub 2014 Jun 25.

A vaccine targeting mutant IDH1 induces antitumour immunity.

Author information

1
1] Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [3].
2
1] Department of Neuropathology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
3
1] Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK) Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
4
Department of Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
5
Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
6
1] Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
7
1] German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
8
Department of Immunotherapy and -prevention Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
9
Ribological GmbH, 55131 Mainz, Germany.
10
Translational Oncology, 55131 Mainz, Germany.
11
Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
12
Metabolic Centre Heidelberg, University Children's Hospital, 69120 Heidelberg, Germany.
13
Center for Molecular Neurobiology, University Medical Center, Hamburg-Eppendorf, 20251 Hamburg, Germany.

Abstract

Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas and other types of tumour. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG), genomic hypermethylation, genetic instability and malignant transformation. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4(+) T-helper-1 (TH1) responses. CD4(+) TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4(+) T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.

PMID:
25043048
DOI:
10.1038/nature13387
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center