Format

Send to

Choose Destination
J Biol Chem. 2014 Sep 5;289(36):24821-31. doi: 10.1074/jbc.M114.576546. Epub 2014 Jul 17.

Antimicrobial histones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas.

Author information

1
From Laboratory of Ecology of Coastal Marine Systems, CNRS UMR 5119, University of Montpellier 2, Ifremer, University of Montpellier 1, and IRD, Place Eugène Bataillon, F-34095 Montpellier, France.
2
From Laboratory of Ecology of Coastal Marine Systems, CNRS UMR 5119, University of Montpellier 2, Ifremer, University of Montpellier 1, and IRD, Place Eugène Bataillon, F-34095 Montpellier, France, the Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile, and.
3
INSERM, Commissariat à l'Energie Atomique (CEA), Université Joseph Fourier, U1038, Etude de la Dynamique des Protéomes, Laboratoire Biologie à Grande Echelle, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
4
From Laboratory of Ecology of Coastal Marine Systems, CNRS UMR 5119, University of Montpellier 2, Ifremer, University of Montpellier 1, and IRD, Place Eugène Bataillon, F-34095 Montpellier, France, guillaume.charriere@univ-montp2.fr.

Abstract

Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria.

KEYWORDS:

Antimicrobial Peptide (AMP); DNA; Innate Immunity; Invertebrate; Mollusk; NET; Reactive Oxygen Species (ROS)

PMID:
25037219
PMCID:
PMC4155652
DOI:
10.1074/jbc.M114.576546
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center