Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2014 Jul 17;158(2):449-461. doi: 10.1016/j.cell.2014.05.040.

Systematic identification of barriers to human iPSC generation.

Author information

1
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Ob/Gyn and Pathology, Center for Reproductive Sciences, and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
2
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
3
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, Diabetes Center, and the WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA 94143, USA.
4
Genomics Solution Unit, Agilent Technologies Inc., Santa Clara, CA 95051, USA.
5
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address: songj@illinois.edu.
6
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Ob/Gyn and Pathology, Center for Reproductive Sciences, and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address: miguel.ramalho-santos@ucsf.edu.

Abstract

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. To elucidate endogenous barriers limiting this process, we systematically dissected human cellular reprogramming by combining a genome-wide RNAi screen, innovative computational methods, extensive single-hit validation, and mechanistic investigation of relevant pathways and networks. We identify reprogramming barriers, including genes involved in transcription, chromatin regulation, ubiquitination, dephosphorylation, vesicular transport, and cell adhesion. Specific a disintegrin and metalloproteinase (ADAM) proteins inhibit reprogramming, and the disintegrin domain of ADAM29 is necessary and sufficient for this function. Clathrin-mediated endocytosis can be targeted with small molecules and opposes reprogramming by positively regulating TGF-β signaling. Genetic interaction studies of endocytosis or ubiquitination reveal that barrier pathways can act in linear, parallel, or feedforward loop architectures to antagonize reprogramming. These results provide a global view of barriers to human cellular reprogramming.

PMID:
25036638
PMCID:
PMC4130998
DOI:
10.1016/j.cell.2014.05.040
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center