Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Hum Genet. 1989 Aug;45(2):325-31.

Detection of an amino acid substitution in the mutant enzyme for a special type of adenine phosphoribosyltransferase (APRT) deficiency by sequence-specific protein cleavage.

Author information

1
Institute of Rheumatology, Tokyo Women's Medical College, Japan.

Abstract

Generally, if mutant and normal proteins have similar molecular weights and electric charges, they cannot easily be distinguished from one another. We have developed a unique method by which a mutant enzyme of adenine phosphoribosyltransferase (APRT) can easily be distinguished from normal enzyme with nearly identical molecular weight and electric charge. DNA sequencing data have suggested that in this special type of disease (Japanese-type APRT deficiency) there is an amino acid substitution from Met to Thr at position 136 of APRT. Since normal APRT has only one Met residue, the Japanese-type mutant APRT should be a methionine-free protein. Using both an amino acid sequence-specific antiserum against APRT, and specific cleavage of peptide at the methionine residue with BrCN, we could distinguish between normal and mutant proteins. Thus, normal but not mutant APRT was cleaved with BrCN, indicating that the mutant APRT is a methionine-free protein. All tested patients with the Japanese-type APRT deficiency were found to synthesize exclusively methionine-free APRT. Usefulness of this method is not restricted to a single family, as 79% of all the patients with this disease among Japanese, and more than half of all the patients with this disease reported in the world, are likely to have this unique mutation. Thus, not only sequence-specific cleavage of DNA with restriction endonucleases but also that of protein with a chemical agent has been shown to be sometimes useful for the diagnosis and analysis of a genetic disease by careful examination of normal and mutant amino acid sequences.

PMID:
2502918
PMCID:
PMC1683345
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center